Задачник «Алгебра. 10 класс» под авторством А.Г. Мордковича — это один из самых популярных учебных материалов для старшеклассников, изучающих алгебру на профильном уровне. Книга давно зарекомендовала себя как надежный помощник в подготовке к экзаменам и олимпиадам, а также в углубленном изучении математики.
ГДЗ по Алгебре 10 Класс Номер 12.23 Профильный Уровень Мордкович — Подробные Ответы
а) ;
б) ;
в) ;
г)
а) ;
Дуга ограничена точками:
Ответ:
б) ;
Дуга ограничена точками:
Ответ:
в) ;
Дуга ограничена точками:
Ответ:
г) ;
Дуга ограничена точками:
Ответ:
Числовая окружность — это окружность радиусом 1, расположенная на плоскости с центром в начале координат. Углы измеряются от положительного направления оси абсцисс, и точка на окружности с углом имеет координаты .
Задача состоит в том, чтобы найти интервал углов , для которых выполнены различные условия для и .
а) ;
Шаг 1: Понимание условия.
Когда , это означает, что точка на числовой окружности лежит в верхней половине окружности — в первой и второй четвертях, где . То есть мы ищем интервал углов, для которых синус положительный.
Шаг 2: Подходящие точки.
- Точка соответствует углу (положительное направление оси абсцисс).
- Точка соответствует углу (отрицательное направление оси абсцисс).
Однако из условия нам нужны углы в первой и второй четвертях. Это значит, что угол должен быть в интервале от до .
Шаг 3: Интервал углов.
Интервал углов для этого условия находится между углами и , но с учётом периодичности числовой окружности:
где — целое число, указывающее на периодичность углов.
Ответ:
б) ;
Шаг 1: Понимание условия.
Когда , это означает, что ордината точек на числовой окружности меньше . Мы ищем углы, для которых . Это условие накладывает ограничения на углы в первой, второй и третьей четвертях, где синус меньше .
Шаг 2: Подходящие точки.
- Точка соответствует углу и также углу .
- Точка соответствует углу .
Шаг 3: Интервал углов.
Углы, соответствующие , находятся в интервале между и , а также повторяются с периодом :
где — целое число.
Ответ:
в) ;
Шаг 1: Понимание условия.
Когда , это означает, что ордината точек на числовой окружности больше . Это условие накладывает ограничения на углы в первой и второй четвертях, где синус больше .
Шаг 2: Подходящие точки.
- Точка соответствует углу .
- Точка соответствует углу .
Шаг 3: Интервал углов.
Интервал углов, соответствующий условию , будет находиться между углами и , с учётом периодичности углов:
где — целое число.
Ответ:
г) ;
Шаг 1: Понимание условия.
Когда , это означает, что точка на числовой окружности находится в нижней половине окружности, то есть в третьей и четвёртой четвертях, где синус отрицателен. Мы ищем углы, для которых .
Шаг 2: Подходящие точки.
- Точка соответствует углу .
- Точка соответствует углу .
Шаг 3: Интервал углов.
Интервал углов, соответствующий , находится между углами и , и повторяется с периодичностью :
где — целое число.
Ответ:
Итоговые ответы:
а)
б)
в)
г)