Краткий ответ:
На отрезке указать числа, которым на числовой окружности соответствует заданная точка;
Границы отрезка:
а)
Ответ: .
б)
Ответ: .
в)
Ответ: .
г)
Ответ: .
Подробный ответ:
На отрезке указать числа, которым на числовой окружности соответствует заданная точка.
Границы отрезка:
Давай сначала преобразуем границы отрезка в десятичную форму, чтобы иметь представление о диапазоне значений.
- Левая граница:
Таким образом, это будет примерно радиана (если взять ).
- Правая граница:
Это примерно равно радиан (если ).
Итак, отрезок можно интерпретировать как радиан.
Теперь давай перейдем к каждому пункту задания.
а)
Шаг 1: Описание точки на окружности.
Точка с координатами соответствует углу , так как на единичной окружности синус этого угла равен , а косинус — . Таким образом, соответствует углу .
Шаг 2: Общее выражение угла.
Для всех углов, которые соответствуют данной точке, общее выражение имеет вид:
где — целое число, показывающее количество полных оборотов (по часовой стрелке или против).
Шаг 3: Проверка попадания в отрезок.
Теперь найдем все такие углы , которые попадают в отрезок :
- Для :
Это значение лежит в пределах отрезка, так как .
- Для :
Это значение также лежит в пределах отрезка.
- Для :
Это значение выходит за пределы отрезка.
Ответ: Углы, соответствующие заданной точке на отрезке, — и .
б)
Шаг 1: Описание точки на окружности.
Точка соответствует углу , так как на единичной окружности синус этого угла равен , а косинус — .
Шаг 2: Общее выражение угла.
Для всех углов, которые соответствуют данной точке, общее выражение угла:
Шаг 3: Проверка попадания в отрезок.
- Для :
Это значение лежит в пределах отрезка.
- Для :
Это значение также лежит в пределах отрезка.
- Для :
Это значение выходит за пределы отрезка.
Ответ: Углы, соответствующие заданной точке на отрезке, — и .
в)
Шаг 1: Описание точки на окружности.
Точка соответствует углу , так как синус этого угла равен , а косинус — .
Шаг 2: Общее выражение угла.
Для всех углов, которые соответствуют данной точке, общее выражение угла:
Шаг 3: Проверка попадания в отрезок.
- Для :
Это значение лежит в пределах отрезка.
- Для :
Это значение выходит за пределы отрезка.
Ответ: Углы, соответствующие заданной точке на отрезке, — только .
г)
Шаг 1: Описание точки на окружности.
Точка соответствует углу , так как на единичной окружности синус этого угла равен , а косинус — .
Шаг 2: Общее выражение угла.
Для всех углов, которые соответствуют данной точке, общее выражение угла:
Шаг 3: Проверка попадания в отрезок.
- Для :
Это значение лежит в пределах отрезка.
- Для :
Это значение также лежит в пределах отрезка.
- Для :
Это значение выходит за пределы отрезка.
Ответ: Углы, соответствующие заданной точке на отрезке, — и .
Итоговые ответы: