Краткий ответ:
а) ;
Если , тогда:
Если , тогда:
Если , тогда:
Ответ:
б) ;
Если , тогда:
Если , тогда:
Если , тогда:
Ответ:
в) ;
Если , тогда:
Если , тогда:
Если , тогда:
Ответ:
г) ;
Если , тогда:
Если , тогда:
Если , тогда:
Ответ:
Подробный ответ:
а) ;
Шаг 1: Анализ неравенства
Начнем с того, что неравенство:
можно разделить на два случая: когда положительно, и когда отрицательно.
Для удобства делим обе части неравенства на . Однако, стоит помнить, что деление на изменяет знак неравенства в зависимости от того, положительное ли оно, или отрицательное.
Шаг 2: Анализ случая
Если , то:
Это значит, что должно лежать в интервале от до , то есть:
Таким образом, для , .
Шаг 3: Анализ случая
Если , то мы можем разделить исходное неравенство на , и неравенство будет изменяться в зависимости от знака:
Это означает, что:
Решение этого неравенства для , когда , дает интервал:
Но поскольку , то этот интервал может быть записан следующим образом:
Шаг 4: Анализ случая
Если , то:
Решение этого неравенства:
Но так как , то этот интервал можно записать как:
Шаг 5: Итоговое решение
Объединив все найденные интервалы, получаем:
б) ;
Шаг 1: Анализ неравенства
Итак, исходное неравенство:
пишется в виде:
Разделив обе части неравенства на (что возможно при ), получаем:
Это означает:
Теперь решим это неравенство в зависимости от знака .
Шаг 2: Анализ случая
Если , то:
Это означает, что лежит на интервале от до , то есть:
Также:
Шаг 3: Анализ случая
Если , то:
Решение этого неравенства:
Таким образом:
Шаг 4: Анализ случая
Если , то:
Решение этого неравенства:
Таким образом:
Шаг 5: Итоговое решение
Объединяя все интервалы, получаем:
в) ;
Шаг 1: Анализ неравенства
Исходное неравенство:
пишется в виде:
Делим обе части на , получаем:
Это означает:
Шаг 2: Анализ случая
Если , то:
Это означает:
Также:
Шаг 3: Анализ случая
Если , то:
Решение этого неравенства:
Таким образом:
Шаг 4: Анализ случая
Если , то:
Решение этого неравенства:
Таким образом:
Шаг 5: Итоговое решение
Объединяя все интервалы, получаем:
г) ;
Шаг 1: Анализ неравенства
Исходное неравенство:
пишется в виде:
Делим обе части на , получаем:
Это означает:
Шаг 2: Анализ случая
Если , то:
Это означает:
Таким образом:
Также:
Шаг 3: Анализ случая
Если , то:
Решение этого неравенства:
Таким образом:
Шаг 4: Анализ случая
Если , то:
Решение этого неравенства:
Таким образом:
Шаг 5: Итоговое решение
Объединяя все интервалы, получаем: