1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ Мордкович 7 Класс по Алгебре Мардахаева Учебник 📕 Семенов — Все Части
Алгебра
7 класс учебник Мордкович
7 класс
Тип
Учебник
Автор
Мордкович А.Г., Семенов П.В., Александрова Л.А., Мардахаева Е.Л.
Год
2018
Издательство
Бином
Описание

Учебное пособие «Алгебра, 7 класс» авторства Мордковича, Мардахаева и Семенова является важным ресурсом для школьников, желающих расширить свои знания в алгебре. Книга выделяется содержательной насыщенностью и продуманной методической организацией, что способствует более легкому и интересному освоению математического материала.

ГДЗ по Алгебре 7 Класс Номер 22.5 Мордкович — Подробные Ответы

Задача

Дана функция у = f(х), где \(f(х) = -x^2\). Найдите: а) f(1), f(-2), f(-\(\frac{1}{2}\)); б) f(a), -f(a), f(-2a); в) \(f(x^2)\), f(|x|), -f(\(\frac{1}{2}\) \(x^2); г) f(-3), f(0)\), f(\(\frac{1}{3}\)); д) f(3a), -f(2a), f(-\(\frac{1}{2}\) a); е) f(\(\frac{1}{2}\) \(x^2)\), -f(|x|), \(f(-x^2)\).

Краткий ответ:

1) a)
\( f(1) = -1^2 = -1 \)

\( f(-2) = -(-2)^2 = -4 \)

\( f(-\frac{1}{2}) = -(-\frac{1}{2})^2 = -\frac{1}{4} \)

б)
\( f(a) = -a^2 \)

\( -f(a) = -(-a^2) = a^2 \)

\( f(-2a) = -(-2a)^2 = -4a^2 \)

в)
\( f(x^2) = -(x^2)^2 = -x^4 \)

\( f(|x|) = -|x|^2 = -x^2 \)

\( -f(\frac{1}{2}x^2) = -(-(\frac{1}{2}x^2)^2) = \frac{1}{4}x^4 \)

г)
\( f(-3) = -(-3)^2 = -9 \)

\( f(0) = -0^2 = 0 \)

\( f(\frac{1}{3}) = -(\frac{1}{3})^2 = -\frac{1}{9} \)

д)
\( f(3a) = -(3a)^2 = -9a^2 \)

\( -f(2a) = -(-(2a)^2) = 4a^2 \)

\( f(-\frac{1}{2}a) = -(-\frac{1}{2}a)^2 = -\frac{1}{4}a^2 \)

е)
\( f(\frac{1}{2}x^2) = -(\frac{1}{2}x^2)^2 = -\frac{1}{4}x^4 \)

\( -f(|x|) = -(-|x|^2) = x^2 \)

\( f(-x^2) = -(-x^2)^2 = -x^4 \)

Подробный ответ:

Условие: Дана функция \(f(x) = -x^2\). Найти значения функции в различных точках.

Решение:

а) Вычисление значений \(f(1)\), \(f(-2)\), \(f(-\frac{1}{2})\):
\(f(1) = -(1)^2 = -1\)

\(f(-2) = -(-2)^2 = -4\)

\(f(-\frac{1}{2}) = -(-\frac{1}{2})^2 = -\frac{1}{4}\)

б) Вычисление значений \(f(a)\), \(-f(a)\), \(f(-2a)\):
\(f(a) = -a^2\)

\(-f(a) = -(-a^2) = a^2\)

\(f(-2a) = -(-2a)^2 = -4a^2\)

в) Вычисление значений \(f(x^2)\), \(f(|x|)\), \(-f(\frac{1}{2}x^2)\):
\(f(x^2) = -(x^2)^2 = -x^4\)

\(f(|x|) = -|x|^2 = -x^2\)

\(-f(\frac{1}{2}x^2) = -(-(\frac{1}{2}x^2)^2) = \frac{1}{4}x^4\)

г) Вычисление значений \(f(-3)\), \(f(0)\), \(f(\frac{1}{3})\):
\(f(-3) = -(-3)^2 = -9\)

\(f(0) = -(0)^2 = 0\)

\(f(\frac{1}{3}) = -(\frac{1}{3})^2 = -\frac{1}{9}\)

д) Вычисление значений \(f(3a)\), \(-f(2a)\), \(f(-\frac{1}{2}a)\):
\(f(3a) = -(3a)^2 = -9a^2\)

\(-f(2a) = -(-(2a)^2) = 4a^2\)

\(f(-\frac{1}{2}a) = -(-\frac{1}{2}a)^2 = -\frac{1}{4}a^2\)

е) Вычисление значений \(f(\frac{1}{2}x^2)\), \(-f(|x|)\), \(f(-x^2)\):
\(f(\frac{1}{2}x^2) = -(\frac{1}{2}x^2)^2 = -\frac{1}{4}x^4\)

\(-f(|x|) = -(-|x|^2) = x^2\)

\(f(-x^2) = -(-x^2)^2 = -x^4\)

а)
\(f(1) = -1\), \(f(-2) = -4\), \(f(-\frac{1}{2}) = -\frac{1}{4}\)

б)
\(f(a) = -a^2\), \(-f(a) = a^2\), \(f(-2a) = -4a^2\)

в)
\(f(x^2) = -x^4\), \(f(|x|) = -x^2\), \(-f(\frac{1}{2}x^2) = \frac{1}{4}x^4\)

г)
\(f(-3) = -9\), \(f(0) = 0\), \(f(\frac{1}{3}) = -\frac{1}{9}\)

д)
\(f(3a) = -9a^2\), \(-f(2a) = 4a^2\), \(f(-\frac{1}{2}a) = -\frac{1}{4}a^2\)

е)
\(f(\frac{1}{2}x^2) = -\frac{1}{4}x^4\), \(-f(|x|) = x^2\), \(f(-x^2) = -x^4\)



Общая оценка
3.6 / 5
Другие учебники
Другие предметы