1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ Мордкович 7 Класс по Алгебре Мардахаева Учебник 📕 Семенов — Все Части
Алгебра
7 класс учебник Мордкович
7 класс
Тип
Учебник
Автор
Мордкович А.Г., Семенов П.В., Александрова Л.А., Мардахаева Е.Л.
Год
2018
Издательство
Бином
Описание

Учебное пособие «Алгебра, 7 класс» авторства Мордковича, Мардахаева и Семенова является важным ресурсом для школьников, желающих расширить свои знания в алгебре. Книга выделяется содержательной насыщенностью и продуманной методической организацией, что способствует более легкому и интересному освоению математического материала.

ГДЗ по Алгебре 7 Класс Номер 6.3 Мордкович — Подробные Ответы

Задача
Изобразите на координатной прямой данные точки и найдите расстояние между ними:
а) М(—4) и N(-1,3); в) С(0) и В(6,5);
б) G(2,5) и F(8); г) R(-3,5) и Q(0).
Краткий ответ:

Подробный ответ:

а) Точки \(M(-4)\) и \(N(-1{,}3)\)

Расстояние между двумя точками на координатной прямой вычисляется как модуль разности их координат:

\[
MN = \left| -4 — (-1{,}3) \right| = \left| -4 + 1{,}3 \right| = \left| -2{,}7 \right| = 2{,}7
\]

На координатной прямой:
— точка \(M\) находится в точке \(-4\);
— точка \(N\) — в точке \(-1{,}3\);
— расстояние между ними — \(2{,}7\) единичных отрезка.

б) Точки \(G(2{,}5)\) и \(F(8)\)

\[
GF = \left| 2{,}5 — 8 \right| = \left| -5{,}5 \right| = 5{,}5
\]

На координатной прямой:
— точка \(G\) — в точке \(2{,}5\);
— точка \(F\) — в точке \(8\);
— расстояние — \(5{,}5\) единиц.

в) Точки \(C(0)\) и \(B(6{,}5)\)

\[
CB = \left| 0 — 6{,}5 \right| = \left| -6{,}5 \right| = 6{,}5
\]

На координатной прямой:
— точка \(C\) — в начале координат, \(0\);
— точка \(B\) — в точке \(6{,}5\);
— расстояние — \(6{,}5\) единиц.

г) Точки \(R(-3{,}5)\) и \(Q(0)\)

\[
RQ = \left| -3{,}5 — 0 \right| = \left| -3{,}5 \right| = 3{,}5
\]

На координатной прямой:
— точка \(R\) — в точке \(-3{,}5\);
— точка \(Q\) — в начале координат, \(0\);
— расстояние — \(3{,}5\) единицы.



Общая оценка
4.4 / 5
Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Другие предметы