1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ Мордкович 7 Класс по Алгебре Задачник 📕 Александрова — Все Части
Алгебра
7 класс задачник Мордкович
7 класс
Тип
Задачник
Автор
А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина, Е.Е. Тульчинская
Год
2017-2021
Издательство
Мнемозина
Часть
1,2
Описание

Задачник по алгебре для 7-го класса, написанный Мордковичем и Александровым, является важным инструментом в обучении математике. Этот учебный материал ориентирован на развитие логического мышления и навыков решения задач у школьников. В данном обзоре мы рассмотрим основные особенности и преимущества этого задачника.

ГДЗ по Алгебре 7 Класс Номер 4.6 Мордкович — Подробные Ответы

Задача

Решите уравнения:

а)
\( \frac{5x}{9} — \frac{7x}{4} + \frac{17x}{18} = -\frac{1}{4} \);

б)
\( \frac{x}{6} — 0.82 = \frac{3x}{8} — 1.37 \);

в)
\( \frac{x}{9} + \frac{7x}{18} — \frac{11x}{27} = 2\frac{1}{2} \);

г)
\( 0.07 — \frac{3x}{9} = 0.26 — x \).

Краткий ответ:

а)
\( \frac{5x}{9} — \frac{7x}{4} + \frac{17x}{18} = -\frac{1}{4} \)

\( \frac{10x}{18} — \frac{63x}{36} + \frac{34x}{36} = -\frac{1}{4} \)

\( \frac{20x — 63x + 34x}{36} = -\frac{1}{4} \)

\( \frac{-9x}{36} = -\frac{1}{4} \)

\( -\frac{x}{4} = -\frac{1}{4} \)

\( x = 1 \)

б)
\( \frac{x}{6} — 0.82 = \frac{3x}{8} — 1.37 \)

\( \frac{x}{6} — \frac{3x}{8} = 0.82 — 1.37 \)

\( \frac{4x — 9x}{24} = -0.55 \)

\( -\frac{5x}{24} = -0.55 \)

\( x = \frac{0.55 \cdot 24}{5} \)

\( x = \frac{13.2}{5} \)

\( x = 2.64 \)

в)
\( \frac{x}{9} + \frac{7x}{18} — \frac{11x}{27} = 2\frac{1}{2} \)

\( \frac{x}{9} + \frac{7x}{18} — \frac{11x}{27} = \frac{5}{2} \)

\( \frac{6x + 21x — 22x}{54} = \frac{5}{2} \)

\( \frac{5x}{54} = \frac{5}{2} \)

\( x = \frac{5 \cdot 54}{2 \cdot 5} \)

\( x = \frac{54}{2} \)

\( x = 27 \)

г)
\( 0.07 — \frac{3x}{9} = 0.26 — x \)

\( 0.07 — \frac{x}{3} = 0.26 — x \)

\( x — \frac{x}{3} = 0.26 — 0.07 \)

\( \frac{3x — x}{3} = 0.19 \)

\( \frac{2x}{3} = 0.19 \)

\( x = \frac{0.19 \cdot 3}{2} \)

\( x = \frac{0.57}{2} \)

\( x = -0.09 \)

Подробный ответ:

а)
\( \frac{5x}{9} — \frac{7x}{4} + \frac{17x}{18} = -\frac{1}{4} \)

\( \frac{20x — 63x + 34x}{36} = -\frac{1}{4} \)
— общий знаменатель 36
\( \frac{-9x}{36} = -\frac{1}{4} \)
— упрощение
\( -\frac{x}{4} = -\frac{1}{4} \)
— сокращение
\( x = 1 \)
— умножение на -4

б)
\( \frac{x}{6} — 0.82 = \frac{3x}{8} — 1.37 \)

\( \frac{x}{6} — \frac{3x}{8} = 0.82 — 1.37 \)
— перенос
\( \frac{4x — 9x}{24} = -0.55 \)
— общий знаменатель 24
\( \frac{-5x}{24} = -0.55 \)
— упрощение
\( -5x = -0.55 \cdot 24 \)
— умножение на 24
\( -5x = -13.2 \)
— вычисление
\( x = \frac{-13.2}{-5} \)
— деление на -5
\( x = 2.64 \)

в)
\( \frac{x}{9} + \frac{7x}{18} — \frac{11x}{27} = 2\frac{1}{2} \)

\( \frac{x}{9} + \frac{7x}{18} — \frac{11x}{27} = \frac{5}{2} \)
— преобразование
\( \frac{6x + 21x — 22x}{54} = \frac{5}{2} \)
— общий знаменатель 54
\( \frac{5x}{54} = \frac{5}{2} \)
— упрощение
\( 5x = \frac{5}{2} \cdot 54 \)
— умножение на 54
\( 5x = 5 \cdot 27 \)
— сокращение
\( x = 27 \)
— деление на 5

г)
\( 0.07 — \frac{3x}{9} = 0.26 — x \)

\( 0.07 — \frac{x}{3} = 0.26 — x \)
— сокращение
\( x — \frac{x}{3} = 0.26 — 0.07 \)
— перенос
\( \frac{3x — x}{3} = 0.19 \)
— общий знаменатель 3
\( \frac{2x}{3} = 0.19 \)
— упрощение
\( 2x = 0.19 \cdot 3 \)
— умножение на 3
\( 2x = 0.57 \)
— вычисление
\( x = \frac{0.57}{2} \)
— деление на 2
\( x = -0.09\)

а)
\( 1 \)

б)
\( 2.64 \)

в)
\( 27 \)

г)
\( -0.09 \)



Общая оценка
4.2 / 5
Другие учебники
Другие предметы